If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-7p-1=0
a = 3; b = -7; c = -1;
Δ = b2-4ac
Δ = -72-4·3·(-1)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{61}}{2*3}=\frac{7-\sqrt{61}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{61}}{2*3}=\frac{7+\sqrt{61}}{6} $
| 2(n+6)=2n+13 | | 3p2−7p−1=0 | | 6m-3m=30 | | 3p^2−7p−1=0 | | (1/27)^2x=729 | | 2d+5d=49 | | x-3+x-4+x=34 | | 4c^2+3c-2=0 | | 4c^2+3c-2=4c | | 8k-4=20 | | 2z3−128z=0 | | 10p^2-17p-20=0 | | 8c^2-2c-15=0 | | 24=n+10 | | 13z=11 | | 7/5x+1/2=7/8 | | 25y2=9 | | d—(-1)=6 | | z^2+5z+9=0 | | y2−25=0 | | (X)(x+2)(x^2)=0 | | 378x^2=378 | | 3(3h)+7-4h=-22 | | (8x+21)+(16x)=180 | | 15w=19 | | 9(1x^2+1x-42)=0 | | c+8=10 | | y2−64=0 | | (x+4)x1.5=2x+4 | | -9.75=3.25x | | 4m^2-21m+10=0 | | (X-2)=0,x+1=0 |